Secondary organic aerosol formation from the photooxidation of isoprene, 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene under high NOx conditions
نویسندگان
چکیده
Secondary organic aerosol (SOA) formation from atmospheric oxidation of isoprene has been the subject of multiple studies in recent years; however, reactions of other conjugated dienes emitted from anthropogenic sources remain poorly understood. SOA formation from the photooxidation of isoprene, isoprene-1-13C, 1,3butadiene, and 2,3-dimethyl-1,3-butadiene is investigated for high NOx conditions. The SOA yield measured in the 1,3butadiene/NOx/H2O2 irradiation system (0.089–0.178) was close to or slightly higher than that measured with isoprene under similar NOx conditions (0.077–0.103), suggesting that the photooxidation of 1,3-butadiene is a possible source of SOA in urban air. In contrast, a very small amount of SOA particles was produced in experiments with 2,3-dimethyl1,3-butadiene. Off-line liquid chromatography – mass spectrometry analysis revealed that the signals of oligoesters comprise a major fraction (0.10–0.33) of the signals of the SOA products observed from all dienes investigated. The oligoesters originate from the unsaturated aldehyde gas phase diene reaction products; namely, semi-volatile compounds produced by the oxidation of the unsaturated aldehyde undergo particle-phase oligoester formation. Oligoesters produced by the dehydration reaction between nitrooxypolyol and 2-methylglyceric acid monomer or its oligomer were also characterized in these experiments with isoprene as the Correspondence to: D. R. Cocker III ([email protected]) starting diene. These oligomers are possible sources of the 2methyltetrols found in ambient aerosol samples collected under high NOx conditions. Furthermore, in low-temperature experiments also conducted in this study, the SOA yield measured with isoprene at 278 K was 2–3 times as high as that measured at 300 K under similar concentration conditions. Although oligomerization plays an important role in SOA formation from isoprene photooxidation, the observed temperature dependence of SOA yield is largely explained by gas/particle partitioning of semi-volatile compounds.
منابع مشابه
Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions
[1] The oxidation of isoprene (2-methyl-1,3-butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under ...
متن کاملSecondary organic aerosol formation from isoprene photooxidation.
Recent work has shown that the atmospheric oxidation of isoprene (2-methyl-1,3-butadiene, C5H8) leads to the formation of secondary organic aerosol (SOA). In this study, the mechanism of SOA formation by isoprene photooxidation is comprehensively investigated, by measurements of SOA yields over a range of experimental conditions, namely isoprene and NOx concentrations. Hydrogen peroxide is used...
متن کاملRole of aldehyde chemistry and NOx concentrations in secondary organic aerosol formation
Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C4-unsaturated aldehyde) under urban high-NOx conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) ...
متن کاملA review of Secondary Organic Aerosol (SOA) formation from isoprene
Recent field and laboratory evidence indicates that the oxidation of isoprene, (2-methyl-1,3-butadiene, C5H8) forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg yr−1) are sufficiently large that the formation of SOA in even small yields results in substantial production of atmospheric particulate matter, likely having implications for air quality and climate. H...
متن کاملEffect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA forma...
متن کامل